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This paper examines the energy conversion mechanisms which govern the emission 
of low frequency sound from an axisymmetric jet pipe of arbitrary nozzle contraction 
ratio in the case of low Mach number nozzle flow. The incident acoustic energy which 
escapes from the nozzle is partitioned between two distinct disturbances in the ex- 
terior fluid. The first of these is the free-space radiation, whose directivity is equivalent 
to that produced by monopole and dipole sources. Second, essentialiy incompressible 
vortex waves are excited by the shedding of vorticity from the nozzle lip, and may 
be associated with the large-scale instabilities of the jet. Two linearized theoretical 
models are discussed. One of these is an exact linear theory in which the boundary of 
the jet is treated as an unstable vortex sheet. The second assumes that the finite width 
of the mean shear layer of the real jet cannot be neglected. The analytical results are 
shown to compare favourably with recent attenuation measurements. 

1. Introduction 
This paper examines the energy conversion mechanisms involved in the emission 

of sound from the interior of a jet pipe in the presence of a subsonic nozzle flow. This 
is particularly relevant to  the problem of ‘excess’ or ‘core’ noise produced by un- 
steady combustion and turbine blading in the jet pipe of an aeroengine. It is also of 
interest in connexion with the energy balance associated with the generation of reso- 
nant oscillations in the pipe and in musical instruments such as the flute. 

According to  experiments of Crow (1972) and of Gerend, Kumasaka & Roundhill 
(1  973), upstream-generated sound is significantly amplified by passage through the 
jet a t  subsonic velocities, the additional radiation being attributed to  the excitation 
of instability waves of the jet. This conclusion has been challenged by Moore (1 977) 
and by Bechert, Michel & Pfizenmaier (1977), who pointed out that it was based on 
measurements of the acoustic intensity a t  a single far-field location. I n  a series of 
carefully conducted experiments Moore demonstrated that, over a wide frequency 
range and for jet Mach numbers lying between 0.1 and 0.9, there is no significant overall 
radiation from the instability mode a t  the excitation frequency. 

This question was investigated by Bechert et al. (1977) using an acoustic tone 
generated within the jet pipe by means of a system of matched loudspeakers. Although 
their experiment was confined to the case of a cold subsonic jet, which precluded a 
strict comparison with the earlier work, the absence of amplification a t  the tonal 
frequency was confirmed. Moreover, a t  sufficiently low acoustic frequencies, specific- 
ally for Helmholtz numbers ka less than unity, k being the acoustic wavenumber and 
a the nozzle-exit radius, a considerable attenuation of the tone was observed during 
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its emission through the nozzle flow into free space, an effect also reported by Moore 
(1977), and amounted to 15 dB or more for ka N 0.2.  A high level of tonal excitation 
is known to bring about an overall increase in the broad-band noise produced by the 
jet (Bechert & Pfizenmaier 1975a; Moore 1977), but Bechert et al. (1977) were able 
to  show that this additional radiation in no way compensates for the strong attenua- 
tion of the tone, the relationship between the broad-band amplification and the ex- 
citation amplitude being essentially nonlinear. 

Munt (1977) has described in detail a linearized analytical theory of the radiation 
of sound from a circular cylindrical pipe in the presence of a subsonic nozzle flow. The 
jet shear layer was approximated by an infinitely thin cylindrical vortex sheet, and 
free-space radiation directivities calculated from this model were shown to be in 
excellent agreement with field shape data obtained by Pinker & Bryce (1976) using a 
jet pipe with a conical nozzle. This led Bechert et al. (1977) to suggest that  the same 
theory could well account for the attenuation observed in their experiment a t  low 
frequencies. I n  this paper we shall verify that this is indeed the case. No direct use 
will be made of Munt’s formulae, however, since, although valid over a wide range of 
conditions, they offer no insight into the nature of the physical mechanisms which 
are called into play during the passage of an acoustic disturbance through the nozzle. 

The interaction of an acoustic tone with low Mach number nozzle flow has been 
studied in relation to laminar-turbulent transition in a separated boundary layer. 
Brown (1935) and the experiments of Freymuth (1966) indicate that the influence of 
the sound on the free shear layer of the jet is restricted to the region close to the 
nozzle lip. Bechert & Pfizenmaier (19753) examined the nature of the flow near the 
lip, and concluded that at sufficiently small Strouhal numbers based on boundary- 
layer width, the disturbed flow leaves the trailing edge tangentially, in accordance 
with the Kutta-Joukowski hypothesis. We shall argue below that an attenuation of 
the acoustic field is necessary in order to energize the essentially incompressible, 
unsteady flow associated with the vorticity that must be shed from the lip to  satisfy 
the Kutta condition. This may involve the growth of spatial instabilities of the jet, 
and in this case the attenuation may be regarded as being necessary to maintain the 
corresponding large-scale ‘ coherent structures ’. Of course, shed vorticity and in- 
stability waves are known to produce sound by their subsequent interaction with the 
nozzle, but a t  low frequencies the radiated sound power is of order M j  relative 
to the power loss from the incident sound wave, Ji7, being the Mach number of the 
jet. This is accordingly a situation in which the production of aerodynamic quadru- 
pole sources (Lighthill 1952), in the form of initially organized vortical disturbances, 
results in an overall reduction in the acoustic energy ! 

All available theories of jet-acoustic interaction (e.g. Crighton 1972; Savkar 1975; 
Munt 1977) employ a vortex-sheet representation of the free shear layer and impose 
the Kutta condition. The Strouhal numbers of interest in the present discussion are 
sufficiently small to justify the application of this condition. However, the experi- 
ments of Pinker & Bryce (1976) and the results reported by Savkar (1975) indicate 
that there is no significant excitation of the instability mode for a cold jet operating 
a t  low subsonic Mach numbers. This suggests that i t  may be necessary to take account 
of the finite width of the mean shear layer, and indeed it may be argued that Pinker 
& Bryce’s experimental results reveal that  close to the nozzle lip the radial length 
scale of the unsteady shed vorticity is much smaller than that of the shear layer. 



Attenuation of sound in nozzle flow 21 1 

In  this paper the attenuation of the sound will be discussed in terms of Lighthill’s 
(1952) acoustic-analogy theory of aerodynamic sound by means of the formulation 
proposed by the author (Howe 1975). It will be assumed that the acoustic wavelength 
is large compared with the radius of the jet pipe, and this will enable the analysis to 
take account of an arbitrary contraction in the cross-sectional area of the pipe a t  the 
nozzle. The general problem is formulated in 3 2 and the characteristics of the free- 
space radiation field are deduced. The mechanism of energy transfer to the essentially 
incompressible vortex motions of the jet is described in 3 3; specific details are given 
for an exterior shear flow modelled by a vortex sheet, and also for an approximate 
treatment of the case of finite shear-layer width (3 4). The predictions of the analysis 
are discussed in relation to the experiments of Pinker & Bryce (1976) and Bechert 
et al. (1977). Various analytical results are collected together in an appendix. 

2. The radiation of internally generated sound from a low Mach number 
nozzle flow 

2.1. Formulation of the problem 

An axisymmetric air jet of density p1 and sound speed c1 exhausts from a jet pipe of 
cross-sectional area &through a nozzle of area A into a stationary ambient medium 
of density and sound speed respectively equal to po and co (figure 1).  The Mach number 
of the flow is taken to be sufficiently small that variations in p1 and c1 may be neg- 
lected. This will be the case if the steady upstream flow velocity U and the nozzle 
exit velocity UJ satisfy M 2 ,  MJ” < 1, where Mach numbers M and MJ are defined by 

M = U/.Cl, MJ = UJ/C,. (2.1) 

Dissipation processes will also be neglected, so that for uniform upstream conditions 
the flow is homentropic, although there may be a variation in the specific entropy s 
across the mean shear layer of the jet. 

A plane harmonic sound wave is incident on the nozzle exit from within the jet 
pipe. It is required to determine the relation between the flux W,, say, of acoustic 
energy through the nozzle, i.e. through the control surface X located just upstream 
ofthe contraction, and the total acoustic power W, radiated into the ambient medium. 
Let p I  denote the amplitude of the incident wave, such that in the upstream region 
the incident pressure perturbation is given by the real part of 

In this expression w is the radian frequency, k, = w/cl, t is the time, and the positive 
direction of the x, axis of a rectangular co-ordinate system (x1,x2,x3) is parallel to 
the mean flow, the origin being located in the centre of the nozzle exit plane. 

The velocity U of the mean flow is a function of position both within the nozzle 
and in the exterior fluid, and in this case the Lighthill (1952) acoustic-analogy theory 
of aerodynamic sound assumes a convenient form when the stagnation enthalpy B, 
rather than the pressure, is taken as the fundamental acoustic variable. The stagnation 
enthalpy is given in terms of the velocity v and the specific enthalpy h by 

B = h+*vZ. (2-3) 
8-2 
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FIGURE 1. Schematic illustration of the configuration considered in the analysis of the emission 
of low frequency sound from a jet pipe in the presence of a mean nozzle flow. 

In  the absence of dissipative processes the inhomogeneous wave equation of the 
acoustic-analogy theory becomes 

1 Dv 
c2 Dt 

1 Dv {& (f 2) + 3 . V - V2 B = divx - - - a x ,  

where 
x = O n V - T V s ,  

(2.4) 

D/Dt = a/at + v - a/ax, w = curl v is the vorticity, c is the local sound speed, and T 
is the temperature (Howe 1975). 

The terms on the right of (2.4) vanish identically except in the shear layer of the jet. 
The fluid is homentropic in the ambient medium and within and upstream of the 
potential core of the jet. In  those regions the pressure is a function of the density 
alone, and the specific enthalpy h may be identified with I dp lp .  Similarly, Crocco's 
form of the momentum equation 

av/at + V B  = - x  (2.6) 

(Liepmann & Roshko 1957, p, 193) reduces to the statement that the flow is irrota- 
tional outside the jet mixing region, with 

B = B,- a$/at (n = 0 , l ) .  (2.7) 

Here g5 is the perturbation velocity potential, and B, takes respectively constant 
values B,, B,, say, in the ambient medium and in the potential region of the jet. 
I n  free space the acoustic pressure p is given by 

where B' = B - B,. 
It follows from these remarks that, when the mean flow is disturbed by the incident 

wave (2.2), a linearized description of the subsequent motion in the potential regions 
is obtained by setting the variable coefficients of the wave operator on the left of 
(2.4) equal to their local undisturbed mean values. When terms O(M,2) relative to 

P/Po = B', (2.8) 
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unity are also discarded the propagation of small disturbances may be taken to be 
described by the convected wave equation 

in the potential region of the jet, and by 

in the ambient medium. 

(2.10) 

2.2. Energy flux within the j e t  pipe 

The flux of acoustic energy through the control surface C (figure 1) into the nozzle 
may be calculated from the general formula 

w, = d(p,(uB’) + U(p‘B‘)) (2.11) 

given by Landau & Lifshitz (1959, $96, 64). The angle brackets denote an average 
over a wave period 27r/w, u is the perturbation velocity, which at C is parallel to the 
x1 axis, and p’ is the perturbation density. 

Equation (2.3) may be used to express the incident wave (2.2) in the form 

B i =  B,exp[i(*-ot)], B IZ  ( 1 + M ) - .  PI 
1+M P1 

(2.12) 

Let R be a reflexion coefficient such that upstream of the nozzle contraction the total 
perturbation stagnation enthalpy is given by the real part of 

(2.13) 

Equations (2.6) and (2.13), and the adiabatic relation between density and pressure 

w, = K(1- )R12), (2.14) 

where W, 3 dpllBI12/2c1 is the power flux of the incident wave (2.2). This result 
can be shown to coincide with Blokhintsev’s (1946) formula 

may now be used to express the energy flux (2.11) in the form 

(2.15) 

where p ,  is the amplitude of the reflected pressure perturbation. The reflexion coeffi- 
cient R is determined by the exterior flow properties of the jet contained within the 
aerodynamic source vector x ,  and will be discussed in 3 3. 

2.3. The free-space radiation 

The characteristic acoustic wavelength is assumed to be large compared with the 
length scale of the nozzle and this, together with the low Mach number restriction, 
enables the effect of fluid compressibility in the nozzle to be neglected in a first approxi- 
mation. Broad-band fluctuations in the flow produced by nonlinear fluctuations in 
the aerodynamic source vector x of (2.4) are also ignored. This is justified by the 
experiments of Bechert et al. (1977)) which reveal negligible amplification of the 
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broad-band radiation for moderate amplitude tonal excitation. Thus only that com- 
ponent of x which is directly proportional to the incident wave need be retained. 

These approximations permit the replacement of the propagation operator in the 
acoustic analogy (2.4) by its standard convected far-field form (2.9) [reducing to 
(2.10) in free space], and also allow the second aerodynamic source term on the right- 
hand side to be discarded, yielding 

ax5 
(cf. Howe 1975). 

(2.16) 

A formal representation of the solution of this equation in free space may be ob- 
tained by making use of the 'advanced potential' Green's function G(x, y, t, 7) which 
satisfies 

(2.17) 

the condition of vanishing normal derivative on the rigid surface of the nozzle, and 
corresponds to an implosive sink at (x, t) which vanishes for 7 > t .  I n  the absence of 
mean flow the form of G(x ,  y, t, 7) has been given by Ffowcs Williams & Howe (1975) 
in the compact approximation in which the acoustic wavelength is large compared 
with the length scale of the nozzle; the modification required in the present discussion 
is outlined in the appendix. 

Equation (2.16) is solved by applying Kirchoff's procedure to (2.16) and (2.17) 
(see, for example, Stratton 1941, chap. 8)' and for an observer located in free space we 
find 

where the surface integral is taken over the control surface X of figure 1 and 

DID7 = a/&-+ Ualay,. 

I n  obtaining this result the momentum equation (2.6) has been used to eliminate 
contributions from surface integrals over the rigid nozzle. The volume integral is 
restricted to the shear layer of the jet, where x is non-zero, and accounts for the sound 
produced by vorticity and entropy fluctuations induced by the incident sound wave 

The contribution B,, say, from the surface integral in (2.18) is evaluated by noting 
that the radiation condition ensures that only the component of B corresponding to 
the incident wave (2.2) need be considered. This contribution may be deduced from 
the representation (A 3) of G(x, y, t, 7) given in the appendix, and is found to be 

(2.2). 

(2.19) 

where [ ] denotes evaluation a t  the retarded time t -  IxI/co. 

position, the volume integral B, of (2.18) becomes 
Similarly, using (A 3) and noting that x must be an axisymmetric function of 
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where 0 is the angle between the + x1 axis and the observer direction and the function 
F,(y) is the potential of incompressible, ideal flow from the nozzle which has unit 
velocity in the +xl direction upstream of the nozzle contraction. Actually we have 
neglected a term in (2.20) which is O ( M )  smaller, M being the Mach number of the 
upstream flow. This is a valid approximation for large values of the area ratio &'/A, 
and in discussing experiments of Bechert et al. (1 977) we shall be concerned principally 
with a case in which the nozzle exit Mach number M j  = 0.3 and M 2: 0.04. 

Combining (2.19) and (2.20), it follows that in the ambient medium 

A complete specification of the radiation depends on the distribution x of the aero- 
dynamic sources, which is the subject of the next section, although it may be antici- 
pated from the definition (2.5) that  the contribution from the terms in x in the brace 
brackets in (2.21) is O(M,) B,, where Mo = UJ/c0. The expansion of (2.21) in powers 
of Mo cos 8 and the rejection of terms O(Mi)  relative to  unity shows that in the leading 
approximation the radiation pattern is equivalent to that produced by a monopole- 
dipole combination, the axis of the dipole being perpendicular to the nozzle exit plane. 

3. The flux of energy through the nozzle 

3.1, The rejexion coeficient 

The reflexion coefficient R, which determines the energy flux through the nozzle via 
(2.14), will be calculated by a procedure in which the acoustic representation (2.13) 
valid upstream of the control surface C, is matched with a low frequency representa- 
tion of the flow in the nozzle. By hypothesis, points near C of axial location x1 are 
well within an acoustic wavelength of the nozzle exit (so that klxl < 1). At such points 
the right-hand side of (2.13) may be expanded in powers of klxl : 

B' = B,{( 1 + R) + iklx,( 1 - R) + . . .} exp ( - id ) ,  (3.1) 

in which terms O(klxl M )  relative to unity have been discarded, M being the upstream 
flow Mach number. 

The terms shown explicitly in (3.1) are trivial solutions of the Laplace equation 
for irrotational incompressible flow, and constitute the upstream limiting form of the 
corresponding incompressible approximation to the flow in the nozzle. I n  the potential 
region of the jet within the nozzle [where (2 .7)  is valid], this incompressible approxi- 
mation may be set in the form 

B' = B,{a+P(FA(x)+2i;(x))}exp(-iwt), (3.2) 

where a: and P are constant, FA(x) is the potential function introduced in 5 2 which 
describes axisymmetric flow from the nozzle in the absence of the jet, and F j ( x )  
represents the correction function required to account for the ' back-reaction ' of the 
exterior jet flow. This back-reaction is produced by the shear flow fluctuations x ,  
and is given by the causal solution of (2.16) in the incompressible limit: 

- a2Bj/axf = axi/ax,, (3.3) 
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where 
B j  = /lB,Fj(x) exp ( -  iwt ) .  (3.4) 

In  order to perform the matching of (3.2) with the near-field terms of (3.1) it is 
necessary to determine the limiting form of B j  a t  C. This can be done by making use 
of the corresponding limiting form of the Green's function g(x, y) which satisfies 

- a29px; = S(x - y )  (3.5) 

and the condition of vanishing normal derivative on the rigid surface of the nozzle. 
When the source point y is within or downstream of the nozzle and the observer 
location x is in the flow upstream of the contraction, it follows from a simple applica- 
tion of the reciprocal theorem (Rayleigh 1945, 0 294) that we may take 

9 ( X , Y )  = -&-lFXY), (3.6) 

since in the reciprocal problem this would characterize the potential close to  and 
downstream of the nozzle exit of a unit point source located a t  the upstream point X. 

Hence, forming the convolution product of '3 and a x j / a x , ,  we have in the upstream 
region 

(3.7) 

which is independent of the upstream location x .  This result expresses the fact that, 
in the absence of compressibility, the shear-layer dipole source x is incapable of 
inducing a net axial flux within the nozzle. To be sure, the existence of such a flux 
would require the dipole to be of infinite strength in order to impart a finite accelera- 
tion to the mass of fluid within the semi-infinite jet pipe. The details of the fluctuation 
velocity upstream of the nozzle exit are therefore described by the potential FA(x) 
of (3.2). I n  the linearized approximation x must be proportional to this velocity, i.e. 
to /lB,exp ( - i w t ) .  This implies that the upstream limiting value (3.7) may be inter- 
preted in terms of a complex ' hydrodynamic end-correction ' 

I ,  = y+i& (3.8) 

which is determined by the incompressible properties of the exterior shear flow, and 
is such that upstream of the contraction 

B j  = - /lB,(y + is) exp ( - iwt) = - x * 3 d3y, (3.9) 3 aY 
where real parts are to be taken. 

The constant a in (3.2) accounts for the possibility of there being a periodic varia- 
tion in the fluid pressure which is uniform throughout the whole of the incompressible 
nozzle flow region, and must therefore be associated with the monopole component 
of the free-space radiation (2.21) (see below). Let this monopole be represented by 

P - = -exp a m  
Po 1x1 [ - iw  (t-:)], (3.10) 

for large 1x1. A t  distances 1x1 well within a wavelength of the nozzle but large compared 
with the nozzle exit radius a, this expression may be expanded in powers of the re- 
tarded time: 

= %exp ( - iwt )  +ik,Qmexp ( -  iwt )  + . .. , 
Po 1x1 

(3.11) 
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where k, = w/co.  The first term on the right-hand side describes an unsteady incom- 
pressible volume flux through a spherical control surface centred on the nozzle exit 
which, by continuity, must equal that produced by the potential F’(x) of (3.2). 
Noting that aFA/axl -+ 1 as x1 + - co within the jet pipe, we therefore have 

PBI d = - 4n@,. (3.12) 

The second term on the right of (3.11) accounts for a uniform fluctuation in pressure 
which matches that within the nozzle and potential core provided that 

ap, B, = if, ko @,. (3.13) 

Eliminating from these relations, we find 

(3.14) 

We are now in a position to match corresponding terms of the representations 
(3.1) and (3.2) of the acoustic field. To do this first observe that upstream of the 
contraction FA(x) N x , - h  (see appendix), where the added length h is real and is 
proportional to the sum of the Helmholtz organ-pipe end correction (Rayleigh 1945, 
chap. 16) and a component arising from the increased resistance to flow produced 
by the contraction. 

Letting x1 -+ -co in (3.2) and identifying terms in the resulting expression with 

( 3 . 1 5 ~ )  

(3.15 b )  

corresponding members of (3. 1) ,  we obtain 

/3 = i k l ( l  - R), 
P{A + + ko dpo/4np1)} = - (1 + R), 

use having been made of (3.9) and (3.14), and where we have set 

A = A+?. 
Solving for R we find 

(3.16) 

(3.17) 

and using this expression in (2.14), it  follows that the flux of energy from the nozzle 
can be expressed in the form 

(3.18) 

This result shows that the flux of energy into the nozzle from the incident sound 
wave (2.2) is determined by two factors, corresponding to each of the terms in the 
brace brackets of the numerator. The first depends on the imaginary part of the hydro- 
dynamic end correction l H ,  and is entirely a feature of the incompressible properties 
of the exterior jet flow. The second, proportional to (k,a)2, arises from the monopole 
component of the sound radiated into the ambient medium. There is no explicit 
contribution from the dipole component of the radiation (2.21) because it is auto- 
matically contained within the hydrodynamic term of (3.18). 
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3.2. The mechanism of hydrodynamic attenuation 

An appreciation of the mechanism by which the exterior jet flow extracts energy from 
the acoustic field may be obtained from a consideration of the contribution of the 
back-reaction B j  of the shear flow to the general energy flux formula (2.11), and we 
shall do this before proceeding to applications ofthe above results to specific modellings 
of the shear flow. 

I n  the present approximation only the first (‘ incompressible ’) term in the paren- 
theses of (2.11) need be retained. When the pulsatile nozzle flow is normalized with 
respect to the coefficient p of (3.2) it follows from our earlier discussion that the axial 
perturbation velocity u depends only on the geometrical configuration of the nozzle 
[i.e. on FA(x)] and not on the properties of the exterior flow. Hence (2.11) implies 
that the exterior shear flow induces an additional energy flux WJ, say, through the 
nozzle, where 

WJ = dpl(uBJ>* (3.19) 

Now aFA/ax, N 1 upstream of the nozzle contraction, so that the local fluctuating 
velocity vA that  would be produced by the acoustic field in the exterior fluid in the 
absence of the jet is just 

V A  = UVF,. (3.20) 

Equations (3.9) and (3.19) therefore show that 

(3.21) 

which states that  the power flux through the nozzle induced by the essentially in- 
compressible properties of the exterior flow is proportional to the rate of working of 
the aerodynamic dipole x in the acoustic component V ,  of the fluctuating velocity 
field. Note that the ‘lift ’ experienced by a vortex element is equal to  - w A v per unit 
mass, and the specific ‘inertia’ force T V s  is equal to - p V ( l / p )  in the absence of 
dissipation, and represents the reaction of a fluid particle when accelerated in an 
environment of different density. 

A particularly illuminating form of (3.21) emerges in the case of uniform mean 
density. The ‘inertia ’ force vanishes identically, and in the incompressible limit 

(3.22) 

Integrate (3.21) by parts, and observe that there is no contribution from the resulting 
integral over the surface of the nozzle, to obtain 

where 
(3.23) 

(3.24) 

is the tensor rate of strain produced by the acoustic component of the fluctuating 
nozzle flow. The velocity vi in (3.22) and (3.23) may be regarded as the total velocity 
minus the acoustic component v,, since curl vA = 0 and the contribution - w A vg 
to  the lift involves the performance of no work. Thus the rate at which energy ex- 
hausts from the nozzle owing to the excitation of incompressible disturbances in the 
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exterior jet flow is just equal to the rate a t  which work is performed on the exterior 
fluid by the Reynolds-stress system -povivj of the vortical flow in the rate-of-strain 
field of the acoustic disturbance. The energy provided in this way is used to generate 
vorticity a t  the lip of the nozzle and may thereby maintain a steady system of spatial 
instability waves on the jet. The latter would be identified with the incipient form 
of the ‘coherent structures’ observed by Moore (1977) and others. 

A preliminary quantitative estimate of the magnitude of the hydrodynamic atten- 
uation is readily obtained in the limit of small Strouhal number wa/UJ. Let ug denote 
the amplitude of the mean axial component of the fluctuating jet velocity in the 
nozzle exit plane. Reference to  (3.2) and use of the momentum equation (2.6) (with 
x = 0) indicates that  

UA = - i d p B , / A w ,  (3.25) 

the factor &/A arising from the continuity of flow in the nozzle. The nozzle ffnctua- 
tions produce a periodic train of axisymmetric vortex rings whose circulation per 
unit length in the x1 direction is equal to UJ+uAexp (-id) a t  the nozzle exit, and 
which convect downstream at velocity &[UJ +uA exp ( - i w t ) ]  (cf. Saffman 1975). If 
the mean shear layer close to the nozzle exit is not too thick, it follows in a linearized 
approximation that 

w A v = uA UJ F 6(r - U) exp [ - iw(t  - Zx,/U,)], (3.26) 

where the radial co-ordinate r = (xi + xi)& and F is the corresponding unit vector. 

aerodynamic source vector x of ( 2 . 5 ) ,  and its substitution into (3.9) shows that 
In  the case of a cold jet, for which p1 F po, (3.26) is the only contribution to the 

(3.27) 

where the surface integral is taken over the nominal boundary r = a of the jet. At 
sufficiently small Strouhal numbers the variation of the exponential in the integrand 
may be neglected over that portion of the boundary where VF, is significant, and it 
then follows from the definition of FA that  

= 0, 6 = d U j / A w ,  (3.28) 

a result which illustrates the dependence of the end correction lH on the hydrodynamic 
length scale U J / w  of the fluctuating nozzle flow. 

Inserting these values of y and 6 in (3.17), we find that the reflexion coefficient R 
has the explicit form 

in which k, = k, for a cold jet. Similarly the energy flux W, becomes 

(3.29) 

(3.30) 

These approximate expressions, which are nonetheless characteristic of the general 
case, show that in the presence of the mean nozzle flow the limit of long wavelength 
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(k,a, k ,h  --f 0 )  does not reproduce the classical results R = - 1 and WT = 0 for re- 
flexion a t  an open end. Indeed for a sufficiently large area ratio &/A, it is clear that 
R 2: + 1 and WT 4W0A/dMJ.  

3.3. Exterior $ow models 

A precise determination of the complex hydrodynamic end correction 1, = y+i8, 
and thence of the energy flux Vk, involves the analysis of a specific modelling of the 
exterior shear flow. This is facilitated by the assumption that the nozzle possesses 
a circular cylindrical neck which extends a distance of a t  least one nozzle exit radius 
downstream of the contraction, as in figure 1 .  It may then be asserted that local 
details of the exterior incompressible flow do not depend critically on upstream 
variations in nozzle geometry, a hypothesis which is justified by the observation that 
the back-reaction B J produces no additional velocity fluctuations in the upstream 
region. We shall therefore examine shear flows calculated on the basis of pulsatile 
incompressible flow from a semi-infinite circular cylindrical duct. 

Two cases I and I1 will be discussed. In  case I the boundary of the jet is represented 
by a linearly disturbed vortex sheet. A thorough discussion of this problem for com- 
pressible flow has been given by Munt (1977), therefore a statement of the relevant 
results obtained in the incompressible limit is sufficient for our purposes. Additional 
details are outlined in the appendix. 

In  Munt’s theory the Kutta condition of finiteness is imposed at  the nozzle lip. 
This is presumably appropriate at  the relatively low Strouhal numbers of interest in 
the present discussion (cf. Bechert & Pfizenmaier 1975b); at higher frequencies and 
correspondingly smaller length scales, sound emerges from the duct without ‘feeling ’ 
the lip, and propagates along energy-conserving ray paths through the mean shear 
layer. The shear layer is unstable, however, the instabilities being associated with 
eigenmodes of oscillation of the jet, and Munt obtains a strictly causal solution in 
which these modes are triggered and sustained by the fluctuating nozzle flow. 

Taking the incompressible limit in Munt’s theory (see appendix) the hydrodynamic 
end correction 1, = y + i8  can be expressed in the following form in case I :  

(3.31 a, b )  

The dimensionless quantities g, p and v are real functions of the Strouhal number 
wa/U, and the density ratio po/pl, and are defined by means of the dispersion function 
Z( UJ k / w ,  ka, po/pl )  given in equation (A 7) of the appendix, whose zeros determine 
those axisymmetric incompressible eigenmodes of a circular cylindrical jet which are 
proportional to exp { i (kxl  - wt)} .  When w is real and positive, say, the zero k = k ,  of 
Z corresponding to the spatially growing instability mode of the jet lies in the fourth 
quadrant of the k plane, and defines ,u and v by 

v + ip = w / u J  kI.  (3.32) 

The imaginary part ,u tends to zero as wa/U, -+ 0. The real part v determines the 
attenuation of the incident sound due to the excitation of the instability wave on the 
jet, and 

(3.33) 
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and varies monotonically between these limits for intermediate values of the Strouhal 
number. 

The remaining function is given in terms of Z by 

(3.34) 

and tends to zero with the Strouhal number @a/UJ. 
Pinker & Bryce (1976) and Savkar (1975) suggest that  in practice instability waves 

are not excited a t  low subsonic Mach numbers. This would be expected to be the 
case if the width of the shear layer were sufficiently large with respect to the hydro- 
dynamic length scale of the fluctuating flow. We shall therefore examine the opposite 
extreme to that discussed by Munt (1977), and assume in case I1 that the effect of 
the finite width of the shear layer cannot be neglected. 

An approximate analytical treatment of this case may be given by noting that in 
the experiments of Pinker & Bryce (1976) the width of the shear layer at the nozzle 
exit is substantially greater than the anticipated viscous-controlled width - ( vA/w)* 
of vorticity shed from the nozzle lip (vA being the kinematic viscosity, - 1.5 x lo5 m2/s 
for air a t  300 OK) even a t  the lowest frequency of interest. Thus if attention is confined 
to a cold jet, in the linearized approximation the aerodynamic source dipole becomes 

x ’ o  A V  = o o A v ’ + o ’ A u + o o A u ,  (3.35) 

where v’ and o’ respectively denote the perturbation velocity and vorticity, and U 
and oo are the corresponding mean flow quantities. The back-reaction B, therefore 
satisfies the following approximate form of (3.3) provided that the length scale of the 
shed vorticity is small compared with the width of the shear layer: 

- VZB, = div (of A U). (3.36) 

In  this case the shed vorticity is located within the shear layer in a region of effectively 
uniform mean velocity and convects downstream at this velocity, which is well 
approximated by one-half of the nominal centre-line jet velocity U, (Davies, Fisher & 
Barratt 1963). The vorticity o’ is assumed to convect along the mean boundary 
r = a of the jet and its strength is determined via the Kutta condition. The procedure 
is outlined in the appendix, and leads to the following determination of the hydro- 
dynamic end correction in case 11: 

= 0,  6 = d U J / 2 A w .  (3.37) 

Return now to the general energy flux formula (3.18). We use the above results for 
the hydrodynamic end correction to obtain the following predictions for the total 
perturbation energy flux from the nozzle: 

Case I. Vortex-sheet model: 
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Case 11. Finite width shear layer (cold je t ) :  

w, = (7 ( 2 I .  (3.39) 
w - 2MJ + (koa)' O A  

( + 6 [ 2MJ + ( k O a ) Z ] )  + ( k 1 A ) 2  

Observe that the formula (3.38) for case I reduces to the approximation (3.30) in 
the limit of small Strouhal number (when v -+ 1; 5, ,u + 0) for a cold jet. Interestingly 
enough, we also see that, again for a cold jet, the limiting value v N 0.5 as w~, fU ,  + co 
implies that the vortex-sheet model (3.38) reduces to the finite width shear-layer 
model (3.39). 

4. The radiated sound power; comparison with experiment 

the sound field to be expressed in the following form: 
The substitution of (3.9) and the explicit linearized form of x1 into (2.21) enables 

(4.1) 

where v, is the radial component of the perturbation velocity. In the case of the vortex- 
sheet model the mean vorticity oo forms a singular distribution on r = a, and the 
integration in (4.1) reduces to the determination of the volume flux through the 
nominal boundary of the jet. Since compressible effects are unimportant in the nozzle 
region this flux is equal to the volume flux from the nozzle, and in the approximation 
of (3.1) the integrated term of (4.1) becomes &B,(1 -R)ilfocosOexp (-iw[t]). This 
result would also be expected to be valid to a good approximation for a shear layer 
of finite width, because the principal contribution to the integral is from the region 
close to the nozzle where the shear layer is relatively thin. Hence using this, and 
( 3 . 1 5 ~ )  and (3.17) to calculate /3, it  follows that in the approximation of long wave- 
length the intensity of the free-space radiation becomes 

-- in case I, 

(4.2) 
I (P? - W o ( ~ / A ) ( f o c , / f , c , )  (koala 

POCO 4w1xp 

When d = A (no nozzle contraction) the vortex-sheet case I agrees with the corres- 
ponding limiting form of Munt's (1977) exact analysis. 

The directivities predicted by these formulae are illustrated in figure 2 and com- 
pared with the field shape data of Pinker & Bryce (1976). Those data are for a cold 
jet with No = M j  = 0.3, and the curve in case I has been calculated for a Strouhal 
number wa,fU, = 0-8 which corresponds to the experiment at  the Helmholtz number 
k,a = 0.24. Actually the comparison with experiment is probably relevant only for 
0 in the range 60"-120", say, where cos20 is not particularly significant, since our 
analysis has systematically neglected terms O ( M i )  relative to unity. The data have 
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FIGURE 2. Predicted field shape characteristics for ka = 0.24 and MJ = 0.3. ___ , case I, 
vortex-sheet model; ---, case 11, finite width shear-layor model. The angle 0 is measured from 
the downstream direction of the jet axis, and the experimental points are taken from Pinker & 
Bryce (1976) at MJ = 0.3: A, ka = 0.24; 0, ka = 0.6. 

been matched with the theory a t  8 = go", and for the above range in 6' both models 
exhibit a tolerable representation of the experimental results, although the overall 
agreement is better for the vortex-sheet model of case I. Note, however, that there 
exists an absolute difference in the levels predicted by the two models a t  90") caused 
principally by the presence of the area ratio &/A in the denominator of each of 
(4.2) and (4.3). I n  the Pinker & Bryce experiment &/A 2: 3.7, and this implies that 
case I1 exceeds case I by about 2.5 dB a t  6' = 90". This is the only way in which the 
area ratio &/A influences the radiated sound field, and presumably accounts for 
the good agreement with experiment of Munt's (1977) field shape predictions based 
on a circular cylindrical nozzle. 

Integration of (4.2) and (4.3) over the surface of a large sphere of radius 1x1 centred 
on the nozzle exit yields the total radiated sound power WF. The contribution from 
the dipole component of the field is now O(M$)  relative to that of the monopole, and 
this must be rejected in order to be consistent with our previous approximations. In  
the limit of long wavelength we then find by comparison with the equations (3.38) and 
(3.39)) giving the energy flux W, through the nozzle 

(4.4) 

(4.5) 

These results are independent of the area ratio &/A. 
Bechert et al. (1977) have measured the attenuation 10loglo(W,/W,~) dB in the 

case of a cold jet over a range of subsonic nozzle exit Mach numbers M j ,  the area 
ratio & / A  being equal to 7.6. Their results are shown in figure 3. Figure 4 compares 
the predictions (4.4) and (4.5) for cases I and I1 with the particular low Mach number 
case M j  = Mo = 0.3. The theoretical curves predict identical overestimates of the 
attenuation a t  the higher values of ka, for which v N 0.5, but of course the compact 
approximation used in deriving our results would be expected to fail in this region. 
At lower values of ka the finite shear layer model produces a marginally better agree- 
ment with experiment. In any event the agreement with experiment is sufficiently 
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FIGURE 4. Comparison of predicted and measured ratio WF/WT as a function of ka for MJ = 0.3. 
Experiment: 0, Bechert et al. ( 1 9 7 7 ) .  Theory: __ , case I, vortex-sheet model; ---, case 11, 
finite width shear-layer model. 

good to give confidence in the validity of the hydrodynamic attenuation mechanism, 
and indicates that  at low frequencies the details of both the attenuation levels and 
the radiation directivities are relatively insensitive to the precise modelling of the 
exterior nozzle flow. 

5. Conclusion 
The emission of low frequency sound from a jet pipe in the presence of a subsonic 

nozzle flow involves a transfer of energy from the acoustic wave to essentially 
incompressible vortex waves on the jet. This produces a net attenuation in the trans- 
mitted sound which is not compensated by the coherent and/or broad-band aero- 
dynamic sound subsequently radiated by the vortex motions. At low Mach number 
and low Helmholtz number ka the predicted attenuation and the field shape of the 
radiated sound do not depend critically on the details of the theoretical modelling of 
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the exterior flow, although a vortex-sheet model tends to predict a slightly lower 
overall level of radiation than one which incorporates the effects of the finite width 
of the shear layer. This supports the view that, as far as the interaction with the 
nozzle is concerned, the question of whether or not the exterior flow is stable is quite 
irrelevant, because the principal interaction occurs within one hydrodynamic length 
scale from the lip of the nozzle. The Kutta condition plays a much more significant 
role inasmuch as shed vorticity both provides the vehicle by which hydrodynamic 
energy is conveyed downstream, and also, through its interaction with the nozzle, 
is responsible for the production of the aerodynamic component of the radiated sound 
and, therefore, for the characteristic field shape variations associated with the mean 
nozzle flow. 

In  the case of the jet pipe of an aeroengine, Bechert et al. (1977) point out that the 
large hydrodynamic attenuation observed in their experiment a t  low frequencies 
would correspond to the lower end of the audible range (50-100 Hz). Effective atten- 
uation could be achieved a t  higher frequencies, however, by making use of multitube 
nozzles. Dean & Tester (1975) have already exploited this silencing mechanism by 
means of a bias air flow through an acoustic wall liner, an expedient originally pro- 
posed for this purpose by Barthel (1958). 

The author gratefully acknowledges the detailed comments of a referee and the 
benefit of discussions with Dr D. Berchert of D.F.V.L.R., Berlin, and Dr R. M. Munt 
of the University of Dundee. This work was performed under contract from NASA 
Langley Research Centre. 

Appendix 
A I .  Compact Green’s function for an axisymmetrie nozzle 

I n  the absence of a mean flow Ffowcs Williams & Howe (1975) have given the follow- 
ing expression for the compact approximation to the Green’s function for an axi- 
symmetric nozzle of the type shown in figure l : 

This is suitable for treating aerodynamic noise problems in which the characteristic 
wavelength of the sound is large compared with the nozzle radius. The observer is 
located in free space a t  the far-field point x, co is the sound speed in the ambient 
medium and c1 that upstream of the nozzle exit. 

The functions F,(y) and K(y) are harmonic, and satisfy the normal velocity con- 
dition n * V(FA, K) = 0 on the walls of the rigid nozzle, n being the unit normal. In 
particular, FA(y) is the potential of an axisymmetric incompressible nozzle flow, and, 
taking the co-ordinate origin in the centre of the nozzle exit plane, as in the main 
text, is normalized such that: 

(i) for lyl > a in free space 
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(ii) within the nozzle in the vicinity of the point N of figure 1, 

d 

1, = 0.6133~ being the ‘end correction’ for a semi-infinite circular cylindrical pipe 
(Noble 1958, p. 138); 

&(Y) -N -jj (Yl- lo) ,  

(iii) upstream of the nozzle contraction 

FA(Y) -N Y1-h, 

where h is the effective, geometric nozzle end correction given approximately by 

h = g ( Z o + ( A + i )  A (y)), 
A being the length of the neck of the nozzle, and L the axiaJ distance over which the 
contraction occurs (Rayleigh 1945, 9 308). 

The vector function K(y) has the following properties: 

( i )  for /yI p a in free space 

(ii) for lyll 9 a in the nozzle 

(iii) in the vicinity of the nozzle exit 

A 

K(Y) = Y ;  
K(y) N constant; 

K(Y) = ( Y1 - 2 FAlY), FB(Y), FdY)) ; 

the precise forms of the potential functions FB and Fc are not required in applications 
to axisymmetric source distributions. 

The compact approximation (A 1) is valid asymptotically in the sense that, for 
source locations y well within an acoustic wavelength of the nozzle, the multipole 
expansion obtained by developing the &function in a retarded time series of the form 
~A,(X,Y)So0(t-~- Ix//co) is correct for n = 0,  1. At low Mach numbers these terms 
describe the principal interaction of the shear-layer sources with the nozzle. The 
method of derivation of (A 1) is described by Howe (1975, appendix), and by Ffowcs 
Williams & Howe (1975) for closely analogous problems. 

In  the presence of a low Mach number nozzle flow, in which the characteristic 
wavelengths remain large compared with the nozzle diameter, (A 1) must be modified 
to take account of the convection of sound by the mean flow. Since FA 2~ yl, K 2: con- 
stant in the upstream region, convection of the ‘imploding’ wave results in the pre- 
sence of a Doppler factor (1 + M ) ,  M being the upstream Mach number, and the 
modified form of (A 1 )  is 

A 2. Incompressible pulsatile nozzle $ow 
The potential Y(x) exp ( - iwt )  3 [FA(x) + F,(x)] exp ( - iwt )  which describes incom- 
pressible pulsatile flow in the downstream portion of the nozzle in the presence of a 
mean flow may be estimated from the corresponding solution for a semi-infinite 
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circular cylindrical duct. In the case in which the shear layer of the exterior flow is 
modelled by a linearly disturbed vortex sheet, the Wiener-Hopf procedure described 
by Munt (1977) yields in the incompressible limit the following solution when the 
Kutta condition is imposed: 

(w- i e U J ) F ( k ,  r )  K+(is) K-(k)  
--oo Ikl ( w - U , k ) Z + ( i t ) Z - ( k )  exp ( ikx , )  d k ] ,  

where 

and the first term in the brace brackets of (A 4) is omitted when r > a. Here and else- 
where lkl = (k2  + E ~ ) * ,  and I, and K ,  are modified Bessel functions of order n (Abramo- 
witz & Stegun 1964, p. 374). 

The various quantities appearing in these formulae are defined as follows. A func- 
tion f ( k )  which is regular and non-zero on the real k axis defines functions f* (k )  
respectively regular and non-zero in Im k 2 0 by means of 

provided that the integral exists in an appropriate sense (Noble 1958, p. 13). 
The functions K and Z are given by 

K ( k )  = 2~1(lkl4Kl( lkl4, (A 7 a )  

As x1 + -co within the circular cylindrical duct the principal contribution to the 
integral in (A 4) is from a simple pole at k = - ie. This yields the approximate form 
of Yr close to the point N of the nozzle of figure 1, viz: 

K+(ie) K-( - ie) exp (ex1) 
2s Z+(iE) Z-( - is)  2s 

Now as E -+ 0 

where I ,  = 0 . 6 1 3 3 ~  is the end correction of a circular cylindrical pipe (Noble 1958, p. 
138). 

The solution (A 4) will satisfy the causality condition, i.e. the condition that the 
fluctuations in the exterior flow are a consequence of the pulsating nozzle flow, provided 
that it is regular in an upper complex w plane (Lighthill 1960). For Imw N +00 the 
dispersion function Z ( k )  -+ $ as k -+ * 00 on the real axis and 

K+(ie) K-( - is)  N 1 - 2 4 ,  (A 9) 

The result for real w is obtained by analytic continuation, and as w approaches the 
positive real axis, say, the zero k = k, of the dispersion function Z ( k )  which corres- 
ponds to the instability mode of the semi-infinite jet crosses the real k axis from the 
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first quadrant into the fourth quadrant. Deforming the contour in (A 10) to take 
account of this, and comparing the result with the integral along the real k axis, we 
find that for real positive w 

The integral here is split into real and imaginary parts by noting that as I m  w + + 0 
the argument of Z ( k )  decreases discontinuously by 277 as k increases through k = w / U J ,  
and in this way we find that for small e 

Substitution of (A 9) and (A 12) into (A 8) gives the limiting value 

where c, ,u and v are defined in (3.32) and (3.34).  Reference to  the defining properties 
of FA(x) given above then shows that 

(A 14) Jd ‘J FJ(x) -’;;?J [(6-pu)+iv1, 

upstream of the nozzle contraction, which immediately leads to (3.31 a, h ) .  

A 3. T h e  case of aJinite width shear layer 

To solve (3.36) first set in the linearized approximation 

and solve (3.36) by the Wiener-Hopf procedure to give 

Write BA = PBIFA(x). The circulation density u of the shed vorticity is chosen 
to ensure that B, + Bj satisfies the Kut t s  condition a t  the nozzle lip. An integral 
expression for B, is obtained by setting L> = 0 in (A 4), and by considering the be- 
haviour of the integrands in (A 4) and (A 16) as k + 00 i t  follows in the usual way (Jones 
197 2) that 

This may be used in (A 6) to determine the upstream limiting form of B j  and thence 
to give (3.37). 
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